Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Failure of climate regulation in a geophysiological model

Abstract

THERE has been much debate about how the Earth responds to changes in climate—specifically, how feedbacks involving the biota change with temperature. There is in particular an urgent need to understand the extent of coupling and feedback between plant growth, global temperature and enhanced atmospheric concentrations of greenhouse gases. Here we present a simple, but we hope qualitatively realistic, analysis of the effects of temperature change on the feedbacks induced by changes in surface distribution of marine algae and land plants. We assume that algae affect climate primarily through their emission of dimethyl sulphide1–8 (which may influence cloud albedo), and that land plants do so by fixation of atmospheric CO2 (refs 9–12). When we consider how the planetary area occupied by these two ecosystems varies with temperature, we find that a simple model based on these ideas exhibits three feedback regimes. In glacial conditions, both marine and terrestrial ecosystems provide a negative feedback. As the temperature rises to present-day values, algae lose their strong climate influence, but terrestrial ecosystems continue to regulate the climate. But if global mean temperatures rise above about 20 °C, both terrestrial and marine ecosystems are in positive feedback, amplifying any further increase of temperature. As the latter conditions have existed in the past, we propose that other climate-regulating mechanisms must operate in this warm regime.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Charlson, R. J., Lovelock, J. E., Andreae, M. O. & Warren, S. G. Nature 326, 655–661 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Coakley, J. A., Bernstein, R. L. & Durkee, P. A. Science 237, 1020–1022 (1987).

    Article  ADS  Google Scholar 

  3. Ayers, G. P. & Gras, J. L. Nature 353, 834–835 (1991).

    Article  ADS  CAS  Google Scholar 

  4. Andreae, M. O. in The Role of Air-Sea Exchange in Geochemical Cycling (ed. Buat-Menard, P.) 331–362 (Reidel, Dordrecht, 1986).

    Book  Google Scholar 

  5. Falkowski, P. G. et al. Science 256, 1311–1313 (1992).

    Article  ADS  CAS  Google Scholar 

  6. Shaw, G. Clim. Change 5, 297–303 (1983).

    Article  ADS  CAS  Google Scholar 

  7. Lawrence, M. G. J. geophys. Res. 98, 20663–20673 (1993).

    Article  ADS  Google Scholar 

  8. Holligan, P. M. in Primary Productivity and Biogeochemical Cycles in the Sea, (eds Falkowski, P. G. & Woodhead, A. D.) 487–501 (Plenum, New York, 1992).

    Book  Google Scholar 

  9. Lovelock, J. E. & Whitfield, M. Nature 296, 561–563 (1983).

    Article  ADS  Google Scholar 

  10. Lovelock, J. E. & Watson, A. J. Planet. Space Sci. 30, 795–802 (1982).

    Article  ADS  CAS  Google Scholar 

  11. Berner, R.A. Geochim cosmochim. Acta 56, 3225–3231 (1992).

    Article  ADS  CAS  Google Scholar 

  12. Schwartzmann, D. W. & Volk, T. Nature 340, 457–460 (1989).

    Article  ADS  Google Scholar 

  13. Lovelock, J. E. Rev. Geophys. 27, 215–222 (1989).

    Article  ADS  Google Scholar 

  14. Watson, A. J. & Lovelock, J. E. Tellus 35B, 284–289 (1983).

    Article  ADS  Google Scholar 

  15. Riley, J. P. & Chester R. in Introduction to Marine Chemistry 42 (Academic, London, 1971).

    Google Scholar 

  16. Berger, W.H., Fischer, K., Lai, C. & Wu, G. Report No. 87–30 (Scripps Inst. Oceanogr., San Diego, 1987).

  17. Neumann, G. & Pierson, W. J. Jr Principles of Physical Oceanography (Prentice-Hall New Jersey, 1966).

    Google Scholar 

  18. Sievering, H. et al. Nature 360, 571–573 (1992).

    Article  ADS  CAS  Google Scholar 

  19. Charlson, R.J., Langer, J. & Rhode, H. Nature 348, 22–25 (1990).

    Article  ADS  CAS  Google Scholar 

  20. Barnola, J. M., Raynaud, D., Korotkevich, Y. S. & Lorius, C. Nature 329, 408–414 (1987).

    Article  ADS  CAS  Google Scholar 

  21. Genthon, C. Nature 329, 414–418 (1987).

    Article  ADS  CAS  Google Scholar 

  22. Legrand, M. et al. Nature 350, 144–146 (1992).

    Article  ADS  Google Scholar 

  23. Shackelton, N. J. & Opdyke, N. D. Quat. Res. 3, 33–55 (1973).

    Google Scholar 

  24. Berger, W. H., Smetacek, V. S. & Wefer, G. Productivity of the Ocean: Present and Past (Wiley Interscience, New York, 1989).

    Google Scholar 

  25. Whung, P. Y., Salzman, E. S. & Davis, M. D. EOS 74, 84 (1993).

    Google Scholar 

  26. CLIMAP Project Members Science 191, 1131–1137 (1976).

  27. Whitmore, T.C. An Introduction to Tropical Rain Forests (Oxford Univ. Press, 1992).

    Google Scholar 

  28. Dickinson, R. E. (ed.) The Geophysiology of Amazonia (Wiley, New York, 1987).

  29. Lean, J. & Warrilow, D. A. Nature 342, 411–413 (1989).

    Article  ADS  Google Scholar 

  30. Watson, A.J., Robinson, C., Robertson, J. E., Williams, P. J. leB. & Fasham, M. J. R. Nature 350, 50–53 (1991).

    Article  ADS  CAS  Google Scholar 

  31. Opdyke, B. N. & Walker, J. C. G. Geology 20, 733–736 (1992).

    Article  ADS  CAS  Google Scholar 

  32. Walker, J. C. G. & Kasting, J. F. Globl Planet Change 5, 151–189 (1992).

    Article  ADS  Google Scholar 

  33. Berner, R. A. Am. J. Sci. 294, 56–91 (1994).

    Article  ADS  CAS  Google Scholar 

  34. Bannister, P. Introduction to Physiological Plant Ecology (Wiley, New York, 1976).

    Google Scholar 

  35. Lewis, M. R. New Scientist 7 October (1989).

  36. Sundquist, E. T. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Recent (eds Sundquist, E. T. & Broecker, W. S.) 5–60 (American Geophysical Union, Washington DC, 1985).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lovelock, J., Kump, L. Failure of climate regulation in a geophysiological model. Nature 369, 732–734 (1994). https://doi.org/10.1038/369732a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/369732a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing